Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Sens ; 9(4): 1842-1856, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38619068

RESUMEN

This article presents a parametrized response model that enhances the limit of detection (LOD) of piezoelectrically driven microcantilever (PD-MC) based gas sensors by accounting for the adsorption-induced variations in elastic properties of the functionalization layer (binder) and the nonlinear motional dynamics of the PD-MC. The developed model is demonstrated for quantifying cadaverine, a volatile biogenic diamine whose concentration is used to assess the freshness of meat. At low concentrations of cadaverine, an increase in the resonance frequency is observed, contrary to the expected reduction due to mass added by adsorption. The study explores the variations in the elastic modulus vis-à-vis the adsorbed mass of cadaverine and derives the resonance frequency to the adsorbed mass response function. We advance a blended technique involving the analysis of atomic force microscopy (AFM) force-distance (f-d) curves and fitting of the quartz crystal microbalance (QCM) impedance response spectrum to deduce the adsorption-induced changes in the viscoelastic properties of the functionalization layer. The findings obtained are subsequently employed in modeling the response function for a structurally nonhomogenous PD-MC, highlighting the significance of the functionalization layer to the global elastic properties. The structural composition of the PD-MC beam adopted herein features a trapezoidal base hosting the actuating piezoelectric stratum and a rectangular free end with a functionalization layer. The Euler-Bernoulli beam theory coupled with Hamilton's principle is used to develop the equation of motion, which is subsequently discretized into a set of nonlinear ordinary differential equations via Galerkin expansion, and the solutions to the first fundamental mode of vibration are determined using the method of multiple scales. The obtained solutions provide a basis for deducing the nonlinear response function model to the adsorbed mass. The derived model is validated by recorded resonance frequency changes resulting from exposure to known concentrations of cadaverine. We demonstrate that the increase in resonance frequency for low concentrations of cadaverine is due to the dominance of the variation of the elastic modulus of the functionalization layer originating from the initial binder-analyte interactions over damping due to added mass. It is concluded that the developed nonlinear response function model can reliably be used to quantify the cadaverine concentration at low concentrations with an elevated Limit of Detection.


Asunto(s)
Gases , Dinámicas no Lineales , Gases/química , Gases/análisis , Tecnicas de Microbalanza del Cristal de Cuarzo/métodos , Límite de Detección
2.
ACS Appl Mater Interfaces ; 16(13): 16580-16588, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38529895

RESUMEN

Nonfullerene acceptors (NFAs) have dramatically improved the power conversion efficiency (PCE) of organic photovoltaics (OPV) in recent years; however, their device stability currently remains a bottleneck for further technological progress. Photocatalytic decomposition of nonfullerene acceptor molecules at metal oxide electron transport layer (ETL) interfaces has in several recent reports been demonstrated as one of the main degradation mechanisms for these high-performing OPV devices. While some routes for mitigating such degradation effects have been proposed, e.g., through a second layer integrated on the ETL surface, no clear strategy that complies with device scale-up and application requirements has been presented to date. In this work, it is demonstrated that the development of sputtered titanium oxide layers as ETLs in nonfullerene acceptor based OPV can lead to significantly enhanced device lifetimes. This is achieved by tuning the concentration of defect states at the oxide surface, via the reactive sputtering process, to mitigate the photocatalytic decomposition of NFA molecules at the metal oxide interlayers. Reduced defect state formation at the oxide surface is confirmed through X-ray photoelectron spectroscopy (XPS) studies, while the reduced photocatalytic decomposition of nonfullerene acceptor molecules is confirmed via optical spectroscopy investigations. The PBDB-T:ITIC organic solar cells show power conversion efficiencies of around 10% and significantly enhanced photostability. This is achieved through a reactive sputtering process that is fully scalable and industry compatible.

3.
Scanning ; 2023: 2936788, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37260614

RESUMEN

Focused ion beams have recently emerged as a powerful tool for ultrastructural imaging of biological samples. In this article, we show that helium ion microscopy (HIM), in combination with ion milling, can be used to visualize the inner structure of both major and minor ampullate silk fibers of the orb-web weaving spider Nephila madagascariensis. The internal nanofibrils were imaged in pristine silk fibers, with little or no damage to the sample structure observed. Furthermore, a method to cut/rupture the fibers using He+ ions combined with internal sample tension is presented. This showed that the stretching and rupturing of spider silk is a highly dynamic process with considerable material reorganization.


Asunto(s)
Helio , Seda , Seda/química , Seda/ultraestructura , Microscopía
4.
Sci Rep ; 13(1): 6695, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37095261

RESUMEN

Spider silk fibres have unique mechanical properties due to their hierarchical structure and the nanoscale organization of their proteins. Novel imaging techniques reveal new insights into the macro- and nanoscopic structure of Major (MAS) and Minor (MiS) Ampullate silk fibres from pristine samples of the orb-web spider Nephila Madagascariensis. Untreated threads were imaged using Coherent Anti-Stokes Raman Scattering and Confocal Microscopy, which revealed an outer lipid layer surrounding an autofluorescent protein core, that is divided into two layers in both fibre types. Helium ion imaging shows the inner fibrils without chemical or mechanical modifications. The fibrils are arranged parallel to the long axis of the fibres with typical spacing between fibrils of 230 nm ± 22 nm in the MAS fibres and 99 nm ± 24 nm in the MiS fibres. Confocal Reflection Fluorescence Depletion (CRFD) microscopy imaged these nano-fibrils through the whole fibre and showed diameters of 145 nm ± 18 nm and 116 nm ± 12 nm for MAS and MiS, respectively. The combined data from HIM and CRFD suggests that the silk fibres consist of multiple nanoscale parallel protein fibrils with crystalline cores oriented along the fibre axes, surrounded by areas with less scattering and more amorphous protein structures.


Asunto(s)
Seda , Arañas , Animales , Seda/química , Microscopía Confocal
5.
Sensors (Basel) ; 23(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36772134

RESUMEN

This work presents an approach for the estimation of the adsorbed mass of 1,5-diaminopentane (cadaverine) on a functionalized piezoelectrically driven microcantilever (PD-MC) sensor, using a polynomial developed from the characterization of the resonance frequency response to the known added mass. This work supplements the previous studies we carried out on the development of an electronic nose for the measurement of cadaverine in meat and fish, as a determinant of its freshness. An analytical transverse vibration analysis of a chosen microcantilever beam with given dimensions and desired resonance frequency (>10 kHz) was conducted. Since the beam is considered stepped with both geometrical and material non-uniformity, a modal solution for stepped beams, extendable to clamped-free beams of any shape and structure, is derived and used for free and forced vibration analyses of the beam. The forced vibration analysis is then used for transformation to an equivalent electrical model, to address the fact that the microcantilever is both electronically actuated and read. An analytical resonance frequency response to the mass added is obtained by adding simulated masses to the free end of the beam. Experimental verification of the resonance frequency response is carried out, by applying known masses to the microcantilever while measuring the resonance frequency response using an impedance analyzer. The obtained response is then transformed into a resonance frequency to the added mass response polynomial using a polynomial fit. The resulting polynomial is then verified for performance using different masses of cantilever functionalization solution. The functionalized cantilever is then exposed to different concentrations of cadaverine while measuring the resonance frequency and mass of cadaverine adsorbed estimated using the previously obtained polynomial. The result is that there is the possibility of using this approach to estimate the mass of cadaverine gas adsorbed on a functionalized microcantilever, but the effectiveness of this approach is highly dependent on the known masses used for the development of the response polynomial model.

6.
Adv Mater ; 35(22): e2211129, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36800532

RESUMEN

The emergence of superconductivity in doped insulators such as cuprates and pnictides coincides with their doping-driven insulator-metal transitions. Above the critical doping threshold, a metallic state sets in at high temperatures, while superconductivity sets in at low temperatures. An unanswered question is whether the formation of Cooper pairsin a well-established metal will inevitably transform the host material into a superconductor, as manifested by a resistance drop. Here, this question is addressed by investigating the electrical transport in nanoscale rings (full loops) and half loops manufactured from heavily boron-doped diamond. It is shown that in contrast to the diamond half-loops (DHLs) exhibiting a metal-superconductor transition, the diamond nanorings (DNRs) demonstrate a sharp resistance increase up to 430% and a giant negative "magnetoresistance" below the superconducting transition temperature of the starting material. The finding of the unconventional giant negative "magnetoresistance", as distinct from existing categories of magnetoresistance, that is, the conventional giant magnetoresistance in magnetic multilayers, the colossal magnetoresistance in perovskites, and the geometric magnetoresistance in semiconductor-metal hybrids, reveals the transformation of the DNRs from metals to bosonic semiconductors upon the formation of Cooper pairs. DNRs like these could be used to manipulate Cooper pairs in superconducting quantum devices.

7.
Mater Today Bio ; 23: 100860, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38179230

RESUMEN

The extraordinary and unique properties of persistent luminescent (PerLum) nanostructures like storage of charge carriers, extended afterglow, and some other fascinating characteristics like no need for in-situ excitation, and rechargeable luminescence make such materials a primary candidate in the fields of bio-imaging and therapeutics. Apart from this, due to their extraordinary properties they have also found their place in the fields of anti-counterfeiting, latent fingerprinting (LPF), luminescent markings, photocatalysis, solid-state lighting devices, glow-in-dark toys, etc. Over the past few years, persistent luminescent nanoparticles (PLNPs) have been extensively used for targeted drug delivery, bio-imaging guided photodynamic and photo-thermal therapy, biosensing for cancer detection and subsequent treatment, latent fingerprinting, and anti-counterfeiting owing to their enhanced charge storage ability, in-vitro excitation, increased duration of time between excitation and emission, low tissue absorption, high signal-to-noise ratio, etc. In this review, we have focused on most of the key aspects related to PLNPs, including the different mechanisms leading to such phenomena, key fabrication techniques, properties of hosts and different activators, emission, and excitation characteristics, and important properties of trap states. This review article focuses on recent advances in cancer theranostics with the help of PLNPs. Recent advances in using PLNPs for anti-counterfeiting and latent fingerprinting are also discussed in this review.

8.
ChemSusChem ; 15(2): e202102617, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-34957698

RESUMEN

Invited for this month's cover is the group of Prof. Morten Madsen, University of Southern Denmark, together with Stensborg A/S and Dr. Shalev's group at the Ben-Gurion University of the Negev. The image shows the integration of Roll-to-Roll (R2R) light-management foils to enhance efficiency of R2R organic photovoltaics. The Full Paper itself is available at 10.1002/cssc.202101611.

9.
ChemSusChem ; 15(2): e202101611, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-34699687

RESUMEN

Light-trapping nanostructures have for decades been researched as a route to enhance the performance of organic solar cells (OSCs). Whereas the power conversion efficiencies (PCEs) of OSCs have reached above 18 %, industrially compatible devices made by scalable processing in air, using only nontoxic solvents and materials, have shown significantly lower performance values. Although light-trapping nanostructures may improve this, the methods for integrating the nanostructures are typically not compatible with industrial scale up. In this work, scalable, industrially compatible, nonfullerene-based OSCs are developed with integrated light-trapping nanostructures at the back electrodes in the devices. The OSCs are made by using scalable roll-to-roll (R2R) and sheet-to-sheet (S2S) processes and the nanostructures are made by using roll-to-plate (R2P) nanoimprint lithography. A fully scalable solution is thereby developed for industrially compatible nanostructured OSCs. The nanostructured devices show enhancements in PCE up to 25 % compared to reference cells, owing to an enhancement in the short-circuit current density (15 %) by enhanced absorption, and improved charge carrier extraction leading to an enhancement in the fill factor (7 %). Optical modeling is utilized to verify the optical effect of the nanostructures. The best devices attain a PCE of 6.5 %, which is the highest reported efficiency for air-processed slot-die coated ITO-free flexible PBDB-T : ITIC devices, here using nontoxic solvents.

10.
Sensors (Basel) ; 21(18)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34577249

RESUMEN

Micro-cantilever sensors are a known reliable tool for gas sensing in industrial applications. We have demonstrated the application of cantilever sensors on the detection of a meat freshness volatile biomarker (cadaverine), for determination of meat and fish precise expiration dates. For achieving correct target selectivity, the cantilevers need to be functionalized with a cadaverine-selective binder, based on a cyclam-derivative. Cantilever surface properties such as surface energy strongly influence the binder morphology and material clustering and, therefore, target binding. In this paper, we explore how chemical and physical surface treatments influence cantilever surface, binder morphology/clustering and binding capabilities. Sensor measurements with non-controlled surface properties are presented, followed by investigations on the binder morphology versus surface energy and cadaverine capture. We demonstrated a method for hindering binder crystallization on functionalized surfaces, leading to reproducible target capture. The results show that cantilever surface treatment is a promising method for achieving a high degree of functionalization reproducibility for industrial cantilever sensors, by controlling binder morphology and uniformity.


Asunto(s)
Técnicas Biosensibles , Animales , Reproducibilidad de los Resultados , Propiedades de Superficie
11.
Artículo en Inglés | MEDLINE | ID: mdl-37056473

RESUMEN

Photochemical and mechanical stability are critical in the production and application of organic solar cells. While these factors can individually be improved using different additives, there is no example of studies on the combined effects of such additive-assisted stabilization. In this study, the properties of PTB7:[70]PCBM organic solar cells are studied upon implementation of two additives: the carotenoid astaxanthin (AX) for photochemical stability and the silicone polydimethylsiloxane (PDMS) for improved mechanical properties. A newly designed additive, AXcPDMS, based on astaxanthin covalently bonded to PDMS was also examined. Lifetime tests, produced in ISOS-L-2 conditions, reveal an improvement in the accumulated power generation (APG) of 10% with pure AX, of 90% when AX is paired with PDMS, and of 140% when AXcPDMS is added in the active layer blend, as compared to the control devices. Singlet oxygen phosphorescence measurements are utilized to study the ability of AX and AXcPDMS to quench singlet oxygen and its precursors in the films. The data are consistent with the strong stabilization effect of the carotenoids. While AX and AXcPDMS are both efficient photochemical stabilizers, the improvement in device stability observed in the presence of AXcPDMS is likely due to a more favorable localization of the stabilizer within the blend. The mechanical properties of the active layers were investigated by tensile testing and cohesive fracture measurements, showing a joint improvement of the photooxidative stability and the mechanical properties, thus yielding organic solar cell devices that are promising for flexible photovoltaic applications.

12.
Beilstein J Nanotechnol ; 11: 1693-1703, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33194518

RESUMEN

This work explores a new technique for the out-of-plane patterning of metal thin films prefabricated on the surface of a polymer substrate. This technique is based on an ion-beam-induced material modification in the bulk of the polymer. Effects of subsurface and surface processes on the surface morphology have been studied for three polymer materials: poly(methyl methacrylate), polycarbonate, and polydimethylsiloxane, by using focused ion beam irradiation with He+, Ne+, and Ga+. Thin films of a Pt60Pd40 alloy and of pristine Au were used to compare the patterning of thin films with different microstructures. We show that the height of Pt60Pd40 thin films deposited onto poly(methyl methacrylate) and polycarbonate substrates can be patterned by He+ ion beams with ultrahigh precision (nanometers) while preserving in-plane features, at the nanoscale, of the pre-deposited films. Ion irradiation of the Au-coated samples results in delamination, bulging, and perforation of the Au film, which is attributed to the accumulation of gases from radiolysis at the film-substrate interface. The irradiation with Ne+ and Ga+ ions destroys the films and roughens the surface due to dominating sputtering processes. A very different behavior, resulting in the formation of complex, multiscale 3D patterns, is observed for polydimethylsiloxane samples. The roles of the metal film structure, elastic properties of the polymer substrate, and irradiation-induced mechanical strain in the patterning process are elaborated and discussed.

13.
J Mater Chem B ; 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32902559

RESUMEN

Nanosystems have shown encouraging outcomes and substantial progress in the areas of drug delivery and biomedical applications. However, the controlled and targeted delivery of drugs or genes can be limited due to their physicochemical and functional properties. In this regard, core-shell type nanoparticles are promising nanocarrier systems for controlled and targeted drug delivery applications. These functional nanoparticles are emerging as a particular class of nanosystems because of their unique advantages, including high surface area, and easy surface modification and functionalization. Such unique advantages can facilitate the use of core-shell nanoparticles for the selective mingling of two or more different functional properties in a single nanosystem to achieve the desired physicochemical properties that are essential for effective targeted drug delivery. Several types of core-shell nanoparticles, such as metallic, magnetic, silica-based, upconversion, and carbon-based core-shell nanoparticles, have been designed and developed for drug delivery applications. Keeping the scope, demand, and challenges in view, the present review explores state-of-the-art developments and advances in core-shell nanoparticle systems, the desired structure-property relationships, newly generated properties, the effects of parameter control, surface modification, and functionalization, and, last but not least, their promising applications in the fields of drug delivery, biomedical applications, and tissue engineering. This review also supports significant future research for developing multi-core and shell-based functional nanosystems to investigate nano-therapies that are needed for advanced, precise, and personalized healthcare systems.

14.
Sci Adv ; 6(28): eabb8097, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32691011

RESUMEN

The prevalence of respiratory illness caused by the novel SARS-CoV-2 virus associated with multiple organ failures is spreading rapidly because of its contagious human-to-human transmission and inadequate globalhealth care systems. Pharmaceutical repurposing, an effective drug development technique using existing drugs, could shorten development time and reduce costs compared to those of de novo drug discovery. We carried out virtual screening of antiviral compounds targeting the spike glycoprotein (S), main protease (Mpro), and the SARS-CoV-2 receptor binding domain (RBD)-angiotensin-converting enzyme 2 (ACE2) complex of SARS-CoV-2. PC786, an antiviral polymerase inhibitor, showed enhanced binding affinity to all the targets. Furthermore, the postfusion conformation of the trimeric S protein RBD with ACE2 revealed conformational changes associated with PC786 drug binding. Exploiting immunoinformatics to identify T cell and B cell epitopes could guide future experimental studies with a higher probability of discovering appropriate vaccine candidates with fewer experiments and higher reliability.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Cisteína Endopeptidasas/química , Diseño de Fármacos , Pandemias/prevención & control , Peptidil-Dipeptidasa A/química , Neumonía Viral/prevención & control , Glicoproteína de la Espiga del Coronavirus/química , Proteínas no Estructurales Virales/química , Enzima Convertidora de Angiotensina 2 , Benzamidas , Benzazepinas , Betacoronavirus/efectos de los fármacos , Betacoronavirus/metabolismo , Sitios de Unión , COVID-19 , Proteasas 3C de Coronavirus , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Cisteína Endopeptidasas/inmunología , Cisteína Endopeptidasas/metabolismo , Evaluación Preclínica de Medicamentos , Epítopos de Linfocito B/efectos de los fármacos , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/efectos de los fármacos , Epítopos de Linfocito T/inmunología , Humanos , Simulación del Acoplamiento Molecular , Peptidil-Dipeptidasa A/inmunología , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/inmunología , Neumonía Viral/virología , Unión Proteica , Conformación Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Compuestos de Espiro/farmacología , Proteínas no Estructurales Virales/inmunología , Proteínas no Estructurales Virales/metabolismo
15.
Adv Mater ; 32(38): e2002352, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32705735

RESUMEN

Crystalline and amorphous structures are two of the most common solid-state phases. Crystals having orientational and periodic translation symmetries are usually both short-range and long-range ordered, while amorphous materials have no long-range order. Short-range ordered but long-range disordered materials are generally categorized into amorphous phases. In contrast to the extensively studied crystalline and amorphous phases, the combination of short-range disordered and long-range ordered structures at the atomic level is extremely rare and so far has only been reported for solvated fullerenes under compression. Here, a report on the creation and investigation of a superconducting quasi-1D material with long-range ordered amorphous building blocks is presented. Using a diamond anvil cell, monocrystalline (TaSe4 )2 I is compressed and a system is created where the TaSe4 atomic chains are in amorphous state without breaking the orientational and periodic translation symmetries of the chain lattice. Strikingly, along with the amorphization of the atomic chains, the insulating (TaSe4 )2 I becomes a superconductor. The data provide critical insight into a new phase of solid-state materials. The findings demonstrate a first ever case where superconductivity is hosted by a lattice with periodic but amorphous constituent atomic chains.

16.
Sci Adv ; 6(20): eaaz2536, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32440544

RESUMEN

The combination of different exotic properties in materials paves the way for the emergence of their new potential applications. An example is the recently found coexistence of the mutually antagonistic ferromagnetism and superconductivity in hydrogenated boron-doped diamond, which promises to be an attractive system with which to explore unconventional physics. Here, we show the emergence of Yu-Shiba-Rusinov (YSR) bands with a spatial extent of tens of nanometers in ferromagnetic superconducting diamond using scanning tunneling spectroscopy. We demonstrate theoretically how a two-dimensional (2D) spin lattice at the surface of a three-dimensional (3D) superconductor gives rise to the YSR bands and how their density-of-states profile correlates with the spin lattice structure. The established strategy to realize new forms of the coexistence of ferromagnetism and superconductivity opens a way to engineer the unusual electronic states and also to design better-performing superconducting devices.

17.
ACS Appl Mater Interfaces ; 12(13): 14983-14992, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32069393

RESUMEN

Au nanoparticle (NP) decorated heterogeneous TiO2 catalysts are known to be effective in the degradation of various organic pollutants. The photocatalytic performance of such Au-TiO2 structures remarkably depends on the size, morphology, and surface coverage of the Au NPs decorating TiO2. Here we propose an effective way of preparing a highly active Au nanocluster (NC) decorated TiO2 thin film by a novel photodeposition method. By altering the solvent type as well as the illumination time, we achieved well-controlled surface coverage of TiO2 by Au NCs, which directly influences the photocatalytic performance. Here the Au NCs coverage affects both the electron store capacity and the optical absorption of the hybrid Au-TiO2 system. At low surface coverage, 19.2-29.5%, the Au NCs seem to enhance significantly the optical adsorption of TiO2 at UV wavelengths which therefore leads to a higher photocatalytic performance.

18.
Nanotechnology ; 31(2): 025303, 2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31539894

RESUMEN

The article reports on an optimization of gold submicron structures based on modified recordable blank digital versatile discs for surface plasmon polaritions excitation, mainly in near-infrared region. We have examined internal layers of commercially available DVD+R, DVD-R, DVD+RW and DVD-RW optical discs and we have elaborated a simple, inexpensive approach providing sharp resonances with efficiency reaching 95% for collimated excitation laser beams. We have experimentally and numerically confirmed the SPPs intensity being up to 220 times the intensity of the excitation laser beam. We have also directly measured thermal energy loss accompanying SPPs excitation.

19.
ACS Appl Mater Interfaces ; 11(44): 41570-41579, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31609582

RESUMEN

Recent efficiency records of organic photovoltaics (OPV) highlight stability as a limiting weakness. Incorporation of stabilizers is a desirable approach for inhibiting degradation-it is inexpensive and readily up-scalable. However, to date, such additives have had limited success. We show that ß-carotene (BC), an inexpensive and green, naturally occurring antioxidant, dramatically improves OPV stability. When compared to nonstabilized reference devices, the accumulated power generation of PTB7:[70]PCBM devices in the presence of BC increases by an impressive factor of 6, due to stabilization of both the burn-in and the lifetime, and by a factor of 21 for P3HT:[60]PCBM devices, owing to a longer lifetime. Using electron spin resonance and time-resolved near-IR emission spectroscopies, we probed radical and singlet oxygen concentrations. We demonstrate that singlet oxygen sensitized by [70]PCBM causes the "burn-in" of PTB7:[70]PCBM devices and that BC effectively mitigates it. Our results provide an effective solution to the problem that currently limits widespread use of OPV.

20.
Sci Rep ; 9(1): 10422, 2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31320718

RESUMEN

Bathocuproine (BCP) is a well-studied cathode interlayer in organic photovoltaic (OPV) devices, where it for standard device configurations has demonstrated improved electron extraction as well as exciton blocking properties, leading to high device efficiencies. For inverted devices, however, BCP interlayers has shown to lead to device failure, mainly due to the clustering of BCP molecules on indium tin oxide (ITO) surfaces, which is a significant problem during scale-up of the OPV devices. In this work, we introduce C70 doped BCP thin films as cathode interlayers in inverted OPV devices. We demonstrate that the interlayer forms smooth films on ITO surfaces, resulting from the introduction of C70 molecules into the BCP film, and that these films possess both improved electron extraction as well exciton blocking properties, as evidenced by electron-only devices and photoluminescence studies, respectively. Importantly, the improved cathode interlayers leads to well-functioning large area (100 mm2) devices, showing a device yield of 100%. This is in strong contrast to inverted devices based on pure BCP layers. These results are founded by the effective suppression of BCP clustering from C70, along with the electron transport and exciton blocking properties of the two materials, which thus presents a route for its integration as an interlayer material towards up-scaled inverted OPV devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...